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Abstract
We show that Abe’s general pseudoadditivity for entropy prescribed by thermal
equilibrium in nonextensive systems holds not only for entropy, but also for
energy. The application of this general pseudoadditivity to Tsallis entropy tells
us that the factorization of the probability of a composite system into a product
of the probabilities of the subsystems is just a consequence of the existence of
thermal equilibrium and not due to the independence of the subsystems.

PACS numbers: 05.20.−y, 05.70.−a, 05.90.+m

Suppose an isolated system is composed of two subsystems, 1 and 2. One of the basic
assumptions of thermodynamics is the existence of an equilibrium state in the compound
system at which T1 = T2, where T is the absolute temperature. This so-called zeroth
law is obeyed by Boltzmann statistical mechanics having additive entropy and energy. For
nonextensive statistical mechanics (NSM) [1], the validity of this law is a more subtle affair
[1–6] which depends on the relationships aS12 = f12(aS1, aS2) and bE12 = g12(bE1, bE2),
where S is entropy and E the internal energy. The numbers in the indices of the functions
indicate the dependence of the latter. a and b are constants used to make each variable
dimensionless in the above equalities. From now on, we let a = b = 1 so that S and E become
dimensionless.

The zeroth law has been established, in an approximate way [3–6], for NSM with Tsallis
entropy and additive energy E12 = E1 + E2. Furthermore, Abe [7] recently found a general
pseudoadditivity of entropy required by the existence of thermal equilibrium for additive
energy:

H(S12) = H(S1) + H(S2) + λSH(S1)H(S2) (1)

where H is the certain differentiable function satisfying H(0) = 0 and λS is a constant
depending on the nature of S. For Tsallis entropy [1], H can be proved to be the identity
function. Equation (1) is very interesting because it can be considered as a general criterion of
pertinent nonextensive entropies for equilibrium systems and may help us to understand Tsallis
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nonextensive statistical mechanics and to find other nonextensive thermostatistics obeying the
zeroth law.

Nonextensive entropy is a consequence of long-range correlations or complex (fractal or
chaotic) spacetime. When interactions are no more limited between or on the walls of the
containers of subsystems, energy may be nonadditive. This issue has been widely discussed
and energy nonadditivity was clearly shown for some cases with long-range interactions
[8–16]. So, inspired by Abe’s work, we naturally ask the following question: what is the kind
of energy nonadditivity that satisfies the requirement of the existence of thermal equilibrium?
In this paper, along the line of Abe, we show that the above equilibrium pseudoadditivity holds
not only for entropy, but also for the internal energy in more general cases where energy-type
thermodynamic variables are not extensive.

To establish the zeroth law, we make a small variation of the total entropy dS12 given by

dS12 = ∂f12

∂S1
dS1 +

∂f12

∂S2
dS2 (2)

and a variation of the total energy E12 given by

dE12 = ∂g12

∂E1
dE1 +

∂g12

∂E2
dE2. (3)

At thermal equilibrium, dS12 = 0 should hold and dE12 = 0 results from energy conservation,
leading to

∂f12

∂S1

∂S1

∂E1
dE1 = −∂f12

∂S2

∂S2

∂E2
dE2 (4)

and
∂g12

∂E1
dE1 = −∂g12

∂E2
dE2. (5)

So we obtain
∂f12/∂S1

∂g12/∂E1

∂S1

∂E1
= ∂f12/∂S2

∂g12/∂E2

∂S2

∂E2
. (6)

Equilibrium means that this above equation yields the zeroth law which is in general given by
the following equality:

F1 = F2 (7)

where F1 and F2 are the same functions depending on subsystem-1 and -2, respectively.
This constraint from the zeroth law implies the following factorizations of the derivatives

in equation (6):

∂f12

∂S1
= φ12ω1ν2 (8)

∂f12

∂S2
= φ12ν1ω2 (9)

∂g12

∂E1
= θ12µ1υ2 (10)

and
∂g12

∂E2
= θ12υ1µ2 (11)

where φ, ω, ν, θ , υ and µ are certain functions of the subsystems indicated by the indices.
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From equation (6) we can write

ξ1
∂S1

∂E1
= ξ2

∂S2

∂E2
(12)

with

ξ1 = ω1υ1

ν1µ1
and ξ2 = ω2υ2

ν2µ2
.

This shows that equations (8) to (11) are really the most general forms of the derivatives of f

and g satisfying equation (7).
We find that all the calculations of Abe [7] hold for f as well as for g. So we can replace

S by E in equation (1). For a system containing N subsystems in equilibrium, we have

ln[1 + λxHx(x12...N )] =
N∑

i=1

ln[1 + λxHx(xi)] (13)

where x can be entropy S or energy E. In general, HS and λS are different from HE and λE,
respectively.

We mention here as examples two nonextensive cases with Tsallis entropy (S = − 1−Trρq

1−q
,

ρ is the density operator) where the zeroth law is claimed to be verified.

1. In the Tsallis nonextensive statistics with escort probability, HS and HE are the identity
functions, λS = (1 − q) and λE = 0 [1, 3–6] (i.e. E is extensive and S12 = S1 + S2 +
(1 − q)S1S2).

2. Another possible case is with Tsallis entropy combined with a so-called incomplete
normalization [17–19] where Hx is the identity function and λx = q − 1 for both entropy
and energy (i.e. x12 = x1 + x2 + (q − 1) x1 x2 or, according to equation (13),

x12...N =
[∏N

i=1(1 + λxxi) − 1
]

λx

with N subsystems). In this case, the zeroth law can hold without approximation, making
it possible to establish an exact nonextensive thermodynamics.

An example of systems satisfying pseudoadditivity of entropy is given by Abe [7] with
Hx(x) = √

x for black-hole entropy proportional to its horizon area. This discussion should
hold for energy as well according to the first law of thermodynamics for a black hole [20] if
electromagnetic work is absent. So it would indeed be interesting to study black holes within
a generalized thermodynamics with nonadditive entropy and energy as well in view of the
difficulty with Boltzmann statistics due to the presence of thermal (infrared) divergence [21].
Another example can be given with the long-range ferromagnetic spin model of which the
internal energy is given by [8, 10, 12]

E(N, T ) = c(T )N
N1−α/d − 1

1 − α/d

where N is the number of particles in the model supposed additive, d the dimension of space, α
the exponent in the factor 1/rα of the long-range potential [8–14] and c(T) a certain function
of temperature T. When N → ∞ and α > d,E(N, T ) = c(T )N is additive. On the other
hand, when α = d, E(N, T ) = c(T )N ln N . If we put, e.g.

HE(E) = {
exp

[
eE/c(T )N

] − e
}/

e and λE = 1
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then E satisfies equation (1) or equation (13). When 0 < α < d, E(N, T) = c(T)N 2−α/d, we
can choose

HE(E) = E

c(T )

1/(2−α/d)

and λE = 0

for energy to satisfy equation (1) or equation (13). There exist other choices, e.g.,

HE(E) = exp

{[
E

c(T )

]1/(2−α/d)
}

− 1 and λE = 1.

As a matter of fact, it seems that, for a given explicit relation between energy or entropy and
number of subsystems or volume supposed additive (i.e. V12 = V1 + V2 and N12 = N1 + N2),
the finding of a function H satisfying equation (1) is a trivial affair. The most essential
contribution of Abe’s work, in our opinion, is that equation (1) finally makes it clear that
the factorization of the compound probability of a composite system into product of the
probabilities of the subsystems is a consequence of the existence of thermodynamic equilibrium
if Tsallis entropy applies, because H is an identity function here. It is straightforward to show
that

S12 = S1 + S2 + (1 − q)S1S2 = −1 − Trρq

1

1 − q
− 1 − Trρq

2

1 − q
+ (1 − q)

1 − Trρq

1

1 − q

1 − Trρq

2

1 − q

= − 1 − Tr(ρ1ρ2)
q

1 − q
= −1 − Trρq

12

1 − q

which means ρ12 = ρ1ρ2 (or that p
q

ij (1, 2) = p
q

i (1)p
q

j (2) implies pij (1, 2) = pi(1)pj (2)

where pi(1) or pj (2) is the probability for subsystem-1 or -2 to be at state i or j and
pij (1, 2) is the probability for the composite system to be at the product state ij ). So the
product probability is rather due to thermal equilibrium instead of the independence of the
noninteracting or weakly interacting subsystems as claimed or insinuated in most of the current
publications. On this basis, we can finally free ourselves from the paradox of addressing
noninteracting independent systems with nonadditive entropy due to long-range interactions.
Additive energy based on independent systems with only short-range interactions does not
conform with the spirit of nonextensive statistical mechanics.

The law of product probability must be respected for any thermodynamic system
in equilibrium. This means that, for NSM with the Tsallis q-exponential distribution,
nonextensive energy is needed for exact treatments of nonextensive interacting systems. In
this sense, all treatments within NSM with additive energy should be viewed as a kind of
extensive approximation and should be proceeded with great care because they give sometimes
very different results from the treatment respecting probability factorization or product state
[19, 22]. This above ‘equilibrium interpretation’ of the factorization hypothesis of compound
probability may have important consequences on the applications of NSM to many-body
systems. More detailed discussions on this issue are given in our other papers [23].

Summing up, we have applied Abe’s method of finding general entropy pseudoadditivity
to a more general case where both entropy and energy are nonextensive. Under
thermal equilibrium, the energy of a nonextensive composite system also obeys Abe-type
pseudoadditivity.
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